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APPLICATION OF PONTRYAGIN’S MAXIMUM PRINCIPLE
FOR MINIMUM WEIGHT DESIGN OF RIGID-PLASTIC
CIRCULAR PLATES

U. LePik

Tartu State University, Estonian S.S.R.

Abstract—The problem of minimum weight design of sandwich-type circular plates for the complementary
condition that the thicknesses of the carrying layers can never be smaller than a specified value hy, is considered.
The material of the plate is regarded as rigid—plastic; for the plastic yield condition any piecewise-linear yield
condition can be taken.

The problem in question is solved with the aid of the Pontryagin’s maximum principle. Possible optimal
régimes are found. The mechanical meaning of the adjoint system is cleared up. The case where the material of
the plate has different yield stresses in tension and compression is discussed in detail. The minimum weight
design problem for simply supported plates under uniformly distributed pressure is solved.

INTRODUCTION

THE minimum weight problem of rigid—plastic plates with sandwich cross sections has
been discussed in many papers. Usually the outer (carrying) layers are considered variable,
the weight of the central layer (core) is neglected, the whole thickness of the plate is con-
stant. Under these assumptions by using the Tresca’s yield condition the minimum weight
problem of circular and annular plates was solved in [1-3]. The same problem for the
Mises yield condition was studied in [4-5]. In the majority of these solutions the thick-
nesses of the carrying layers at certain cross sections were found to be zero. This is an
impractical result since such sections cannot transmit shear forces. With the purpose to
get solutions which are free from this shortcoming in the present paper the plates with the
complementary condition, that the thicknesses of the carrying layers can never be smaller
than a specified value h, are considered. The material of the plate is regarded rigid—plastic
(without strain hardening); for the yield condition any piece-wise linear yield condition
can be taken (thus our results are also valid for anisotropic plates).

The problem is solved with the aid of the Pontryagin’s maximum principle. Possible
optimal regimes are found (Section 2). They can be divided into three following groups;
1. both carrying layers have minimal thicknesses h,, 2. one layer has minimal thickness h,,
the thickness of the other layer is variable, and 3. both layers have variable thicknesses.

A more detailed analysis is given for a material having different yield stresses in tension
and compression (the Prager’s model is used). Synthesis of the optimal solutions, which
were found in Section 2, is carried out for a simply supported plate under uniform pressure
(Section 4-5).
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1. BASIC EQUATIONS

Let us consider a simply supported plate of radius R under the lateral load of mag-
nitude g. The equilibrium equations of the plate are as follows

E_TZ-—TI dMl_MZ-Ml
dp p dp

where p = r/R; T;, T,, M,, M, stand for membrane forces and bending moments in the
radial and circumferential directions.

The plate has a sandwich cross section consisting of three layers (Fig. 1). Let us mark
all the quantities for the upper and lower layer of the cross section with superscripts
*“—""and “+”, respectively. The thicknesses of the layers h~ and h* are regarded different
and variable with co-ordinate p. Besides, these quantities are limited from below, that is
h™(p) = hy, h*(p) = h,. The whole thickness of the plate D is regarded invariable.

—34R%p, (1.1)

m%///IMIA

FiG. 1. Sandwich-type cross section.

Ifo[,05.07,0; are the stresses in the carrying layers, one can calculate the quantities
T,, T, M, M, from the formulae

T, = holou® +o7u")
M; = 3Dhy(ou” —o;u7), (i=12)

whereu™ =h /hy > Lu® = h"/h, = L
Since we are going to design a plate the outer layers of which would have a minimum
weight, the performance index will be

(1.2)

1
J= f (™ +uT)pdp = min. (1.3)
0

We shall take quantities T,, M, and p for state constraints. The Pontryagin’s Hamil-
tonian has the form
_ Y
H = ™ +u o+ T~ T+ L2 MM~ 1aR20) 0. (14)
Here ¥4, ¥y, ¥,, ¥; are the Lagrangian multipliers; yr, is a nonpositive constant,
¥, ¥, Y5 can be found from the adjoint system
dy, J0H dy, ¢H dy  0H

iy - , = ——. 1.5
dp 0T, dp oM, dp ap (L.5)
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According to the maximum principle such admissible control constraints should be
found which give the Hamiltonian a maximum value for Vp &[0, 1].

The following boundary conditions belong to equations (1.1) and (1.5). At the center
p = Oone has; =, = 0. At the boundary p = 1 we can have two variants of boundary
conditions: (@) M, = 0and T, = Oor(b) M, = 0,v = 0,¥, = 0O (here v is the rate of radial
displacement).

2. OPTIMAL REGIMES

Let us suppose that the yield condition of the material has the form as shown in Fig. 2.
It can be easily demonstrated that the stresses in the carrying layers o, 65 for optimal
régimes must correspond to the sides or to the vertices of the yield polygon in Fig. 2. To
prove this statement let us regard quantities T,, M,, u® for control constraints. It follows
from (1.5) that y, = C,p, Y, = C,p. The maximum of the Hamiltonian is realized when
T, and M, have extremal values; it follows from the formulae (1.2) that these extremal
values can be obtained only on the boundary of the yield curve in Fig. 2, which was to be
proved.

o2

/
L/

FiG. 2. Yield polygon.

ex(5,8,)

Now we shall examine some special cases.

First case

Let us assume that the stress states 6, 65 correspond to two sides of the yield polygon
in Fig. 2 and the equations of these sides are

o[ = ac; +b, o = eo; +f. 2.H

Here a, b, ¢, f are constants. It is assumed that a # ¢,a # 0, ¢ # 0.
Making use of the equations (1.2) and (2.1) one obtains

1= =g+ L me D) e e S

2 b 2 1 2 @2
—M, = ho(au_—éu+)———~(T1 —M1)+—(T1+—M) .

D 2e D

As the quantities T,, M, can now be calculated from the formulae (2.2), the independent
control constants are only ¥~ and u*. Using the equations (1.4) and (2.2) the two first
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formulae of the system (1.5) obtain the form

dy, A4 D Ddy, B, AD
L= 2y, +B—y,, —+2"y,, 23
dp p‘/’1+ 2p'ﬂ2 ) dp ,0 ‘/’2 (2.3)
where
1 1 1 1
=1—-~——-— ————
4 2a 2¢’ B = 2a 2e

The integrals of these equations are
_ D -
Y, = ClPA+B+C2PA 5, Elpz = ClPA+B_C2PA 5. (2.4)

Since u* > 1, the maximum of the Hamiltonian (1.4) is guaranteed only when
J0H/ou* < 0, This requirement leads us to the following inequalities
‘/’0 < 2C2h0pr—B—2’ l/’o < 2C1h0pr+B—2.

a e

(2.5)

These results remain valid when one (or both) of the straight lines (2.1) are parallel to
the o,-axis; then we have a — oo or e — o respectively, but the relations b/a and f/e
remain finite. As to the cases a = 0 or ¢ = 0 (one of the sides is parallel to the o,-axis),
they demand a special analysis.

In all subcases which were examined above, the maximum of the Hamiltonian (1.4)
took place only in case of u* = 1; consequently both carrying layers must have the
minimum thickness h,.

Second case

Here the stress states o, 65 correspond to a side and a vertex of the yield polygon in
Fig. 2. Let the co-ordinates of the vertex be (¢, ¢5) and the equation of the side
o7 = ac; +b. Now we get the following formulae for T, and M, :

11 of 1 1 b
Tzz—(—+a—i)T1+—(62 a)M —~—hou”

2\a o] D\e{
2 1ol 1 1{o; 1 b 29)
02 Uz _
—M, == —|Ty+—=+~-|M,+—hou".
D’ 2(0? a) D of+a) 1ot
The dimensionless thickness u* can be calculated from the formula
1 2
R p— RV i 2.7
" 201+h0( 1D ‘) 27)
In view of the equations (2.6) and (2.7) the adjoint system (1.5) takes the form
.,f wo 1 2 v 29
Dd 2 _ of 2
-~ — B A D=,
2 dp 2h(,a1 5 p e 2p
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where
o3 1 {1 o3
=1-={-%+2], B= 29
Av=1 2(af+a) 2(a o7 @3)
The solution of the equations (2.8) gives

¥, = 4!/;10p +C pAl+31+C pAl By
5 \//0 (2.10)

op’ Ay +B A1-B

—_— —_ 1 1 __C 17 1,

2!!/2 “ahyoT ++Cyip 2P

The subcase o = 0 needs a complementary analysis.

Since in the second case quantities T,, M, and u™* can be found from equations (2.6)
and {2.7), only 4~ can be taken for the control constraint. Since u™ > 1, according to the
maximum principle it must be

oH b ¥, Dy,
— = ~hol ~—+=—"=] <0.
P ; !/lop‘*“ hO + 3 P < 0
In view of (2.10) this condition gives
vo < 2CP iz @11)
a
Consequently in the second case we have 4~ =1 or b~ = h,. The thickness of the

other layer is calculated from (2.7).

Third case

In this case the stress states in both carrying layers correspond to the vertices of the
yield polygon. If the co-ordinates of the vertices are (61, 65 ), (6], a7 ), we get the following
equations according to (1.2):

a5 2 5 2
T,= 2T, +iM (1,2
2= ggr{ tpth ) t3e\ D DM‘) o)
2 o} 2 o5 2 '
pMe= 27| pM ) “2o;\ M)
1 2.,
“1 = 2hoo; h- D )
2.13)

1 2
u, = s (T‘+DM )
Since all the quantities T,, M,, u,, u, are calculated from (2.12) and (2.13) in this case
we have no control constraints. The adjoint system (1.5) is
Ay, Yop 1 ) Vi, o ¥
1

= e A,~—+B,D
dp 2h00’1+0' +2p+22p

Ddy, _ _Yop[ !l 1 )+Bzﬂ+A2D¢z
p 2p’

(2.14)

2 dp  2ho\e] o
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where
6y o5 1

A, =1-22_%
z 267 207 272

or of

ﬂ-ﬁy (2.15)

The integrals of the system (2.14) have an analogical form to (2.10).

As the thicknesses of both carrying layers are variable, they can be calculated from
(2-13).

Thus we have found all optimal régimes for the yield polygon in Fig. 2. These régimes
must be synthesized for the minimum weight design of a circular plate. Besides, the fol-
lowing conditions should be fulfilled: 1. the boundary conditions for T;, M, yr,, ¢, at
p = 0and p = 1, 2. the continuity conditions for T, M, ¢, ¢, at the contact points of
different régimes, 3. the inequalities (2.5) and (2.11). As to the third Lagrange multiplier
V3, in the given problem we have not any boundary conditions for it and the last equation
of the system (1.5) can always be integrated so that ¥, is continuous for p [0, 1]. Con-
sequently this quantity is of no importance in solving the present problem.

3. THE MECHANICAL MEANING OF THE LAGRANGE MULTIPLIERS

We shall proceed from the asscciated flow law, according to which the plastic flow
vector is perpendicular to the sides of the polygon in Fig. 2. Let ef and eF be the strain
rates of the carrying layers; these quantities are related to displacement rates v and w by
the formulae
1de_ D d?°w +_lv_de

_tde D dwo . _Tvo. D dw 31
R d/o—}—2R2 dp? 2 7R p+2R2p dp (3.0

s
1

As to the first case of Section 2, it follows from the associated flow law and from the
equations (2.1) that

ae; +e; =0, eef +e; = 0. (3:2)

Making use of (3.1) the equations (3.2), after some algebraic transformations, can be
presented in the form

D dv

ad;(vp) = Av—Bg j—:), gdip(wp) = —Bv+A5 d_p’ (3.3)
where
PR S R O |
2a 2e 2a 2e
These results completely coincide with (2.3) if we take
Y= xpv, Y, = ?ij—::. (3.4)

From the double signs in (3.4) one has to choose such signs, that the strain vector
would be directed outward of the yield polygon.
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Now let us examine the second case of Section 2. For the side o7 = ao; +b the flow
rule gives ae; +e; = 0. It is known from the theory of minimum weight design (see ¢.g.
[2]) that on the layer of variable thickness the rate of plastic dissipation A is constant,
consequently

A=oclef +oje; =K >0. (3.5)

Putting the values of the strain rates ef, eF from (3.1) into (3.5) and into the equation
ae; +e; = 0, one gets

d KR D dw

——(pt) = —p+Av—B, - —

dp 20, 2 dp (36)
Ddfdw KR . . Ddw '
2dp\Pap] T T2 PO T gy

Quantities A,, B, are defined by the formulae (2.9).

The comparison of expressions (3.6) and (2.8) leads us again to (3.4); besides, we have
Yo = —KRh; < 0. An analogical analysis, which was carried out for the third case,
showed that the formulas are valid here as well. So it can be concluded that formulae (3.4)
hold good for every optimal régime.

4. OPTIMAL DESIGN OF PLATES WITH BOUNDARY CONDITIONS T7(1) = 0

In this part of the paper it is assumed that the yield polygon has the form shown in
Fig. 3. Such a hexagon was proposed by Prager for materials which have different yield
stresses in tension and compression ¢F. In the following analysis we shall examine only
the case y = o, /o = 1 (for the sake of conciseness).

Let us assume that the following plastic régimes in Fig. 3 are realized for the plate of
mirmimum weight* 1. D— A for pe{p,, p,),2. D—BAfor pe(p,, p,). 3. DE—BAfor (p,, 1].

The formulae of Section 2 will be valid provided we carry out the following sub-
stitutions b/a =a;, fle= —6}, a—> w0, e> 0, of =a,7 =0}, 6] =06; = —0,.
Putting these values into (2.2), (2.6) and (2.12), we obtain

=T, M,=M,, for p€el0,py),
1 D
L= %TI_I-)MI“O';hO& M, = 'XT;‘*’%M}‘*'O}-]?O» for pelpispa)
D
T, = holo,” —a;), M, = Eho(as— +a), for pe(p,,1].

o

2] £

F1G. 3. The Prager’s model for material with different yield stresses in tension and compression.

* The designation DE— BA shows that the layer “—,, is in régime DE and the layer ** +,, in BA.
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Using these expressions let us integrate the equilibrium equations (1.1). The integration
constants can be found from the boundary conditions T,(1) = M,(1) = 0 and from the
continuity conditions for T; and M, at p = p,, p = p,. Fulfilling still the conditions
u (p,) = 1,u"(p,) = 1 we get the equations

Ql—-p) =1, Qyi-p} =1, 4.1)
where
LS
" 6Dhyo;

Q

For a given nondimensional load Q the quantities p,, p, can be found from equations
4.1).

Since A=1,B=0,4, =4, B, = —3, A, = B, = 0 the formulae (2.4), (2.10), (2.14)
give

Yop?[ 1 1 D Yop?[1 1
¢1=C1__°_p - —y,=C, -2 a—++—_, for pe[0,p,),

4hy \aS o] 2 4h,, o,
Yop® D Yop®
Y, = _4}:)0: +C3+Cyup, 5'/’2 = —4h(:,a: +C3—Cup forpe(p,,p,),

D
Y, = Csp, 5‘/’2 = Cep, forpe(py,1].

Constants C, — C, can be determined from the boundary conditions ¥,(0) = ,(0) = 0
and from the continuity conditions for ¥, ¥, at p = p, and p = p,. As to inequalities
(2.5) and (2.11), it is easy to verify that they are always satisfied. Thus our solution fulfills
all the conditions which were set up in Sections 1-2 and actually presents a plate of mini-
mum weight. As to the nondimensional thicknesses u*, then in view of (2.7) and (2.13)
they can be calculated from the formulae

u” =1+3Q(p7—p?, forpe[0,p,] and u~ =1, forpe(p,;,1] @2
ut = 1+3Qy(p5—p?), forpel0,p,] and u* =1, forpelp,,1]. '

5. PLATE DESIGN FOR BOUNDARY CONDITION (1) =0

For this problem the following plastic régimes are realized: 1. D— A for pe[0,p,),
2. DE— A for pe(p,,p,), 3. DE—BA for pe(p,,1]. The boundary and continuity con-
ditions are the same as in Section 4, only the condition T,(1) = 0 is changed into (1) = 0.
The solution is completely analogical to that demonstrated in Section 4. Therefore let us
write down only the final results. The quantities p,, p, can be found from the equations

p2=17p1,  QM2—pi—p3) =1+ (5.1)

The dimensionless thicknesses of the carrying layers are
u” =1+430(p2—p?, forpe[0,p,] and u~ =1, forpelp,,1]
ut = 14+30y(p?—p?), forpe[0,p,] and u* =1, forpelp,,1].
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While increasing Q, quantity p, also increases. If

y+1
Q = Q* = yzyg_l’
then p, = 1, and the solution given above is not applicable for @ > Q.. In this case
régimes D— A for pe[0,p,) and DE— A for pe(p,, 1] appear. It can be shown that now
quantity p, does not depend upon Q and has a constant value p, = 1/y. The dimensionless

thicknesses are as follows

1
u = %Q(5—2p?—3p2)—;, for p [0, 1]

. (5.3)

ut =1+30y(p?—p?), forpel0,p,] and u* =1, forpelp,,1].

6. DISCUSSION

When y = 1 (the material has equal yield stresses in tension and compression) it follows
from (4.1) and (5.1) that p, = p,, Q(1 —p}) = 1 and the solutions achieved in Sections 4-5
coincide. For this case u~ = u* (the carrying layers have equal thicknesses). In the extreme
case when hy, — 0 our formulae coincide with the results published before.

The effectiveness of the achieved solutions can be estimated by the values of integral
(1.3). In view of the equations (4.2), (5.2) and (5.3) we obtain

Ji = 1+30(pt +70%), (6.1)

14303 +7yp}), forQ<gQ,

J2=99y-1

6.2
—+1Q(7—i3), forg = Q,. (62)
8 ¥

2y

Here J, and J, are the values of integral (1.3) for the cases T,(1) = 0 and v(1) =0
respectively. The caiculations, which were carried out for the given values of Q, showed
that J, < J;;e.g. wehave J, = 1.95,J, = 1-48for Q = 2,y = 1.5and J, = 306, J, = 2.07
for @ = 2, y = 3. It follows from these data that for the minimum weight design the case
v(1) = 0 is considerably more advantageous than the case T,(1) = 0.

Now let us set a somewhat different problem : to design a sandwich plate with constant
thicknesses of the carrying layers h* > h, and h™ > hy so that load g would have the
greatest value for a given value of b~ +h*.

The solution of this problem is in the case T,(1) = 0 as follows

h* = yh™, Q=£lh—=u‘
° (6.3)
J3 = 30(1+y).
For the case v(1) = 0 one gets
1 1
h* = hg, Q= E(u‘+—),
’ (6.4)
y—1
Jo=Q0+—.

2y

Here J; and J, are the values of integral (1.3), calculated for h* = const.
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It is of interest to compare the projects with variable and constant thicknesses of the
carrying layers. The economy in weight for variable thicknesses is characterized by the
quantities #, = 1 —J,/J;, n, = 1—J,/J,. The values of n, and 5, vs nondimensional
load Q are presented for y = 1,y = 1-5and y = 3 in Fig. 4. It follows from this figure that
the economy in weight can be extended to 25 per cent.

025

Q20 |~

€ o]
- RN od
& 5

040

005 -

1 i
o5 0 5 20 25 30
Q

FIG. 4. Economy coefficients #,, #, vs nondimensional load Q.
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A6crpakt —Mccnenyercs  3a0a4a  MHHUMANIBHOTO BECH KPYMAbIX JURACTHH  iulla "Conasuua’™  apu
ROMOSHHTENLHOM OTDAHUHMEHUH, YTO TONMIMHLI HECYUIHX COEB HE MOFYT CTaTh MEHLLWUMMU OT 33AAHHON
BEMHYMHEI Ao, MaTepuan IiacTHHbl XEeCTKO-MAACTHIECKMI, NIs YCNOBUA TEKYYECTH MOXHO B3aTh moboe
KYCOUHO-JIMHEHHOE YCIIOBHE TEKYYECTH,

IMocTagneHHaa 3aAa4a pemaercs mpy noMoiw npuHuuna mMakcumyma JI. C. INourpsaruna. Haiayres
BCEBO3MOXHBIE ONTHMAJBHBIE PEXHMBI. BBIACHACTCS MEXaHMYECKMil CMBICIT COMPSXEHHOH CUCTEMBI,
Bonee noapo6HO aHANM3MPYETCst Clydadl MaTepuana, MMEIOLIETO PA3NHYHbIE MPEAEsbl TEKYYECTH IIPH
pacTsokeHun M cxati. COCTABJICHBI TP IIPOEKTA HAHMEHBIIEro Beca s cBo60AHO OMePTOH NNACTHHBI,
HATPYKEHHOH PABHOMEPHBIM ITONIEPEYHBIM JABICHUEM.



