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APPLICATION OF PONTRYAGIN'S MAXIMUM PRINCIPLE
FOR MINIMUM WEIGHT DESIGN OF RIGID-PLASTIC

CIRCULAR PLATES

O. LEPIK

Tartu State University, Estonian S.S.R.

Abstract-The problem of minimum weight design of sandwich-type circular plates for the complementary
condition that the thicknesses of the carrying layers can never be smaller than a specified value ho, is considered.
The material of the plate is regarded as rigid-plastic; for the plastic yield condition any piecewise-linear yield
condition can be taken.

The problem in question is solved with the aid of the Pontryagin's maximum principle. Possible optimal
regimes are found. The mechanical meaning of the adjoint system is cleared up. The case where the material of
the plate has different yield stresses in tension and compression is discussed in detail. The minimum weight
design problem for simply supported plates under uniformly distributed pressure is solved.

INTRODUCTION

THE minimum weight problem of rigid-plastic plates with sandwich cross sections has
been discussed in many papers. Usually the outer (carrying) layers are considered variable,
the weight of the central layer (core) is neglected, the whole thickness of the plate is con
stant. Under these assumptions by using the Tresca's yield condition the minimum weight
problem of circular and annular plates was solved in [1-3]. The same problem for the
Mises yield condition was studied in [4--5]. In the majority of these solutions the thick
nesses of the carrying layers at certain cross sections were found to be zero. This is an
impractical result since such sections cannot transmit shear forces, With the purpose to
get solutions which are free from this shortcoming in the present paper the plates with the
complementary condition, that the thicknesses of the carrying l'!yers can never be smaller
than a specified value ho are considered, The material of the plate is regarded rigid-plastic
(without strain hardening); for the yield condition any piece-wise linear yield condition
can be taken (thus our results are also valid for anisotropic plates).

The problem is solved with the aid of the Pontryagin's maximum principle. Possible
optimal regimes are found (St:ction 2). They can be divided into three following groups;
1. both carrying layers have minimal thicknesses ho, 2. one layer has minimal thickness ho,
the thickness of the other layer is variable, and 3. both layers have variable thicknesses.

A more detailed analysis is given for a material having different yield stresses in tension
and compression (the Prager's model is used). Synthesis of the optimal solutions, which
were found in Section 2, is carried out for a simply supported plate under uniform pressure
(Section 4--5).
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1. BASIC EQUATIONS

Let us consider a simply supported plate of radius R under the lateral load of mag
nitude q. The equilibrium equations of the plate are as follows

(1.1)

where p = r/R; T1 , Tz' M1 , Mz stand for membrane forces and bending moments in the
radial and circumferential directions.

The plate has a sandwich cross section consisting of three layers (Fig. 1). Let us mark
all the quantities for the upper and lower layer of the cross section with superscripts
" - " and" +", respectively. The thicknesses of the layers h- and h+ are regarded different
and variable with co-ordinate p. Besides, these quantities are limited from below, that is
h-(p) ~ ho' h+(p) ~ ho' The whole thickness of the plate D is regarded invariable.

q

FIG. 1. Sandwich-type cross section.

(1.2)
(i = 1,2)

If 0" ~ ,0"2' 0": ,0"; are the stresses in the carrying layers, one can calculate the quantities
T" Tz , M, , Mz from the formulae

T; = ho(atu+ +O"j-u-)

where u- = h- /ho ~ 1, u+ = h+ /ho ~ 1.
Since we are going to design a plate the outer layers of which would have a minimum

weight, the performance index will be

J = fa' (u- +u+)p dp = min. (1.3)

We shall take quantities T" M I and p for state constraints. The Pontryagin's Hamil
tonian has the form

H = t/Jo(u- +u+)P+~~(T2- T,)+ WZ(M z-M 1 -iqRZpZ)+t/J3' (1.4)
p P

Here t/J0' t/J I' t/J z' t/J 3 are the Lagrangian multipliers; t/J 0 is a nonpositive constant,
t/J l' t/J z' t/J3 can be found from the adjoint system

dt/Jz
dp

aH
-aM'

1

(1.5)
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According to the maximum principle such admissible control constraints should be
found which give the Hamiltonian a maximum value for \jp E [0, 1].

The following boundary conditions belong to equations (1.1) and (1.5). At the center
p = °one has t/J I = t/J Z = 0. At the boundary p = 1 we can have two variants of boundary
conditions: (a) M I = °and TI = °or (b) M I = 0, V = 0, t/J z = °(here v is the rate of radial
displacement).

2. OPTIMAL REGIMES

Let us suppose that the yield condition of the material has the form as shown in Fig. 2.
It can be easily demonstrated that the stresses in the carrying layers a~, at for optimal
regimes must correspond to the sides or to the vertices of the yield polygon in Fig. 2. To
prove this statement let us regard quantities Tz , M z, u ± for control constraints. It follows
from (1.5) that t/JI = CIp, t/Jz = Czp· The maximum of the Hamiltonian is realized when
Tz and M z have extremal values; it follows from the formulae (1.2) that these extremal
values can be obtained only on the boundary of the yield curve in Fig. 2, which was to be
proved.

CI',

FIG. 2. Yield polygon.

Now we shall examine some special cases.

First case
Let us assume that the stress states a~, at correspond to two sides of the yield polygon

in Fig. 2 and the equations of these sides are

a~ = aa2 +b, at = eat +f· (2.1)

(2.2)

Here a, b, e, f are constants. It is assumed that a i= e, a i= 0, e i= 0.
Making use of the equations (1.2) and (2.1) one obtains

Tz = -ho(~U- +~u+) +L( TI-~M I) + ;ATI+~M I)

~Mz = ho(~u--~u+)-L(TI-~MI)+;e(TI+~M) .

As the quantities Tz , M z can now be calculated from the formulae (2.2), the independent
control constants are only u- and u+. Using the equations (1.4) and (2.2) the two first
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formulae of the system (1.5) obtain the form

dl/l l A D
-d = -1/11 +B-

2
1/12'

P P P
where

1 1
A = 1----,

2a 2e

The integrals of these equations are

D dl/l2 _ BAD.,.
2 dp - p+2i'l'2'

1 1
B = ---.

2a 2e

(2.3)

(2.4)

Since u± ~ 1, the maximum of the Hamiltonian (1.4) is guaranteed
oHlou± sO, This requirement leads us to the following inequalities

,I. < 2C2hob A-B-2 ,I. < 2C l hof A+B-2
'1'0 - P , '1'0 - P .

a e

only when

(2.5)

These results remain valid when one (or both) of the straight lines (2.1) are parallel to
the a I-axis; then we have a --+ 00 or e --+ 00 respectively, but the relations bla and fie
remain finite. As to the cases a = 0 or e = 0 (one of the sides is parallel to the a 2-axis),
they demand a special analysis.

In all subcases which were examined above, the maximum of the Hamiltonian (1.4)
took place only in case of u± == 1; consequently both carrying layers must have the
minimum thickness ho .

Second case

Here the stress states af, af correspond to a side and a vertex of the yield polygon in
Fig. 2. Let the co-ordinates of the vertex be (at, ai) and the equation of the side
a 1 = aaz+b. Now we get the following formulae for T2 and M 2:

1(1 a+) 1(a+ 1) bT
2

= - _+_2_ T
I
+ __2 M I --hou-

2 a at D at a a

2 1(ai 1) 1(ai 1) b-M2 = - --- TI +- -+- M I +-hou-.
D 2 at a D at a a

The dimensionless thickness u+ can be calculated from the formula

In view of the equations (2.6) and (2.7) the adjoint system (1.5) takes the form

(2.6)

(2.7)

(2.8)
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where

A = 1_!(a1+!)
1 2 ai a'

The solution of the equations (2.8) gives

_ I/Jopz +C pAl +BI +C pAI-BI
4h + I Zoa l

_ I/Jop
z

+C pAI+BI_C pAI-B,
4hoat I z·

619

(2.9)

(2.10)

:s O.

The subcase a i = 0 needs a complementary analysis.
Since in the second case quantities Tz , M z and u + can be found from equations (2.6)

and (2.7), only U- can be taken for the control constraint. Since u- ;::: 1, according to the
maximum principle it must be

oR = l/JoP+~ho( _I/JI +~ I/Jz)
OUI a p 2 P

In view of (2.10) this condition gives

(2.11)

(2.12)

(2.13)

(2.14)

Consequently in the second case we have U- == 1 or h- == ho. The thickness of the
other layer is calculated from (2.7).

Third case

In this case the stress states in both carrying layers correspond to the vertices of the
yield polygon. If the co-ordinates ofthe vertices are (a~, (2), (at, an we get the following
equations according to (1.2):

a1 ( 2 ) a2 ( 2 )Tz = 2ai T1 +JjM I + 2a~ TI -JjM 1

2 a1 ( 2 ) a2 ( 2 )JjM z = 2ai Tt +JjM I -2a~ Tt-JjM t ,

U1= 2h~a~ (T1-~M I)

Uz = 2h~at (TI+~M I)'
Since all the quantities Tz , M Z, U I , Uz are calculated from (2.12) and (2.13) in this case

we have no control constraints. The adjoint system (1.5) is

dl/Jl = _l/JoP(_1 +_1) +A I/JI +B DI/Jz
dp 2ho a i a ~ z p z 2p

~ dl/Jz = _l/JoP(_1__1 ) +BZI/JI +AzDl/Jz
2 dp 2ho at a~ p 2p'
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(2.15)

The integrals of the system (2.14) have an analogical form to (2.10).
As the thicknesses of both carrying layers are variable, they can be calculated from

(2.13).
Thus we have found all optimal regimes for the yield polygon in Fig. 2. These regimes

must be synthesized for the minimum weight design of a circular plate. Besides, the fol
lowing conditions should be fulfilled: 1. the boundary conditions for T1 , M 1, l/J l' l/J 2at
p = °and p = 1, 2. the continuity conditions for T1 , M 1, l/J 1, l/J2at the contact points of
different regimes, 3. the inequalities (2.5) and (2.11). As to the third Lagrange multiplier
l/J3' in the given problem we have not any boundary conditions for it and the last equation
of the system (1.5) can always be integrated so that l/J3 is continuous for p E[0,1]. Con
sequently this quantity is of no importance in solving the present problem.

3. THE MECHANICAL MEANING OF THE LAGRANGE MULTIPLIERS

We shall proceed from the assC'ciated flow law, according to which the plastic flow
vector is perpendicular to the sides of the polygon in Fig. 2. Let ef and ef be the strain
rates of the carrying layers; these quantities are related to displacement rates v and w by
the formulae

+ 1 v _ D dw
e- - --+---

2 - R P 2R 2P dp·
(3.1)

As to the first case of Section 2, it follows from the associated flow law and from the
equations (2.1) that

ae~ +ez = 0, eei +ei = 0. (3.2)

Making use of (3.1) the equations (3.2), after some algebraic transformations, can be
presented in the form

where

d D dw
-(vp) = Av-B--,
dp 2 dp

1 1
A = 1----,

2a 2e

D d D dv
"2 dp(wP) = -Bv+A"2 dp'

1 1
B = ---.

2a 2e

(3.3)

These results completely coincide with (2.3) if we take

dw
l/J2 = +P dp· (3.4)

From the double signs in (3.4) one has to choose such signs, that the strain vector
would be directed outward of the yield polygon.
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Now let us examine the second case of Section 2. For the side <T~ = a<T2+b the flow
rule gives ae~ +e2 = O. It is known from the theory of minimum weight design (see e.g.
[2]) that on the layer of variable thickness the rate of plastic dissipation L\ is constant,
consequently

L\ = <Tiei +<Tiei = K > O. (3.5)

(3.6)

Putting the values of the strain rates er, ei' from (3.1) into (3.5) and into the equation
ae; +e2 = 0, one gets

d KR D dw
-(pv) = -p+Alv-B I--dp 2<Ti 2 dp

D d (dW) KR D dw
2" dp Pdp = - 2<Ti p-B l v+A I 2" dp'

Quantities A I' B I are defined by the formulae (2.9).
The comparison of expressions (3.6) and (2.8) leads us again to (3.4); besides, we have

VJo = -KRho < O. An analogical analysis, which was carried out for the third case,
showed that the formulas are valid here as. well. So it can be concluded that formulae (3.4)
hold good for every optimal regime.

4. OPTIMAL DESIGN OF PLATES WITH BOUNDARY CONDITIONS T1(l) 0

In this part of the paper it is assumed that the yield polygon has the form shown in
Fig. 3. Such a hexagon was proposed by Prager for materials which have different yield
stresses in tension and compression <T;. In the following analysis we shall examine only
the case}' = <T; l<Ts+ ~ 1 (for the sake of conciseness).

Let us assume that the following plastic regimes in Fig. 3 are realized for the plate of
minimum weight* 1. D A for P E[PI' PI)' 2. D-BA for P E(PI' P2)' 3. DE -BA for (P2, 1].

The formulae of Section 2 will be valid provided we carry out the following sub-
stitutions bla = <Ts-' fIe = -<Ts+' a --+ 00, e --+ 00, <Ti = <T/ <Ts+, 0'; = 0'2 = -<Ts-'
Putting these values into (2.2), (2.6) and (2.12), we obtain

T2 = TI , M2 = M I , for pE[Olpd,

I 1 _ D I _
T2 = zTI-JjMI-<Ts ho, M 2 = "4 TI +zM I+O's ho, for PE(PI,P2)

+ D _ +
T2 = ho(<Ts -<Ts-)' M 2 = Iho(<Ts +<Ts ), for pE(p2,1].

"'2
B A

o

cr,

FIG. 3. The Prager's model for material with different yield stresses in tension and compression.

* The designation DE - BA shows that the layer" "is in regime DE and the layer" + " in BA.
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Using these expressions let us integrate the equilibrium equations (1.1). The integration
constants can be found from the boundary conditions T,(I) = M ,(I) = 0 and from the
continuity conditions for T, and M, at p = p" P = P2' Fulfilling still the conditions
u-(pd = 1, U+(P2) = 1 we get the equations

Q(I- pi) = 1, Qy(l- p~) = 1, (4.1)

where

For a given nondimensionalload Q the quantities P" P2 can be found from equations
(4.1).

Since A = 1, B = 0, A, = t, B, = -t, A 2 = B2 = 0 the formulae (2.4), (2.10), (2.14)
glve

(4.2)

Constants C, -C6 can be determined from the boundary conditions ",,(0) = "'2(0) = 0
and from the continuity conditions for"'" "'2 at P = P, and P = P2' As to inequalities
(2.5) and (2.11), it is easy to verify that they are always satisfied. Thus our solution fulfills
all the conditions which were set up in Sections 1-2 and actually presents a plate of mini
mum weight. As to the nondimensional thicknesses u±, then in view of (2.7) and (2.13)
they can be calculated from the formulae

u-=I+tQ(pi-p2), forpE[O,p,] and u-==I, forpE[p"I]

u + = 1+tQy(p~ - p2), for P E [0,P2] and u + == 1, for P E [P2' 1].

5. PLATE DESIGN FOR BOUNDARY CONDITION v(l) = 0

For this problem the following plastic regimes are realized: 1. D - A for P E [O,p,),
2. DE-A for pE(p"P2)' 3. DE-BA for pE(P2, 1]. The boundary and continuity con
ditions are the same as in Section 4, only the condition T,(I) = 0 is changed into'" ,(I) = O.
The solution is completely analogical to that demonstrated in Section 4. Therefore let us
write down only the final results. The quantities p" P2 can be found from the equations

P2 = YP" Qy(2- pi - p~) = 1+y. (5.1)

The dimensionless thicknesses of the carrying layers are

u-=I+tQ(p~-p2), forpE[OIP2] and u-==I, forpE[p2,1]

u+ = 1+tQy(pi - p2), for P E [O,p,] and u+ == 1, for P E [p" 1].
(5.2)
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(5.3)

(6.3)

While increasing Q, quantity P2 also increases. If

2 y+ 1
Q = Q* = Y ~1'Y -

then P2 = 1, and the solution given above is not applicable for Q > Q*. In this case
regimes D-A for P E [OIPI) and DE -A for P E(PI' 1] appear. It can be shown that now
quantity PI does not depend upon Q and has a constant value PI = 1/y. The dimensionless
thicknesses are as follows

1
u- =tQ(5-2pt-3p2

)--, forpE[O,I]
y

u+ = l+iQy(p~_p2), forpE[OIPI] and u+ == 1, forpE[PI,I].

6. DISCUSSION

When y = 1(the material has equal yield stresses in tension and compression) it follows
from (4.1) and (5.1) that PI = P2' Q(I- pt) = 1 and the solutions achieved in Sections 4-5
coincide. For this case u- = u+ (the carrying layers have equal thicknesses). In the extreme
case when ho --+ 0 our formulae coincide with the results published before.

The effectiveness of the achieved solutions can be estimated by the values of integral
(1.3). In view of the equations (4.2), (5.2) and (5.3) we obtain

JI = 1+~Q(pi+ypi), (6.1)

1
1+~Q(Pi+YPi)' forQ::S;; Q*

J2 = y-l 1 ( 1) (6.2)
-+-Q 7-3 , for Q ~ Q*.

2y 8 y

Here JI and J 2 are the values of integral (1.3) for the cases TI (I) = 0 and v(l) = 0
respectively. The calculations, which were carried out for the given values of Q, showed
that J2 < J I ; e.g. we have J I = 1·95, J2 = 1·48 for Q = 2, y = 1·5 and JI = 3·06, J2 = 2·07
for Q = 2, y = 3. It follows from these data that for the minimum weight design the case
v(l) = 0 is considerably more advantageous than the case TI (I) = O.

Now let us set a somewhat different problem: to design a sandwich plate with constant
thicknesses of the carrying layers h + ~ ho and h - ~ ho so that load q would have the
greatest value for a given value of h - +h + .

The solution of this problem is in the case TI (I) = 0 as follows

h-
h+ = yh - , Q = - = u-

ho

J3 = tQ(1 +y).

For the case v( 1) = 0 one gets

h + = ho, Q = Hu - +t),
y-l

J4 = Q+2Y'

Here J3 and J4 are the values of integral (1.3), calculated for h± = const.

(6.4)
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It is of interest to compare the projects with variable and constant thicknesses of the
carrying layers. The economy in weight for variable thicknesses is characterized by the
quantities 'll = 1-JdJ3 , 'Iz = 1-J21J4 • The values of'll and '12 vs nondimensional
load Qare presented for y = 1, Y = 1·5 and y = 3 in Fig. 4. It follows from this figure that
the economy in weight can be extended to 25 per cent.

252·0

Q

FIG. 4. Economy coefficients 111,112 vs nondimensionalload Q.
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A6cTpaKT-l1ccJIeAYeTCSl 1aiJ,a'la MHHItMaJIhHOrO Beca KpyrJIhlX flJIaCTItH Iltlla "~")HABI1'fa" flPIt
iJ,0I10JlHHTe,1hIlOM orpalllt'leHItIt, 'ITO TOJlll.\I1Hhl HecYll.\ItX CJlOeB He MoryT CTaTh MeHhWHMH 01' 1aiJ,aHHOli
BeJIH'lHHbl ho. MaTepHaJl Il.naCTHHhl lKCCTKO-I1JIaCl'H'leCKMH, AJlH YCJlOBHlI TeKy'leCTH MOlKHO B3HTh mo60e
KycO'lHO-mlHeHHoe YCJlOBlle TeKY'leCTH.

fIOCTaBJIeHHali 3aiJ,a'la pewaeTCH rrpH rrOMOll.\H rrpHHl.\ltl1a MaKCHMYMa J1. C. fIoHTpHrHHa. HaHiJ,YTcSI
BceB03MOlKHble OI1THMaJlbHbIe pelKHMbI. BbISlCHSleTCH MeXaHH'leCKHH CMbICJl COl1plllKeHHoH CHCTeMbI.
DOJlee 110iJ,P06HO aHaml3ltpyeTcli CJlY'laH MaTepHaJla, HMeIOIIIero pa3J1It'lHhle I1peiJ,eJIbl TeKY'IeCTIt I1PH
paCTHlKeHHH H ClKaTHH. COCTaBJleHbI TpM I1poeKTa HaHMeHbwero Beca iJ,JlSl CB060iJ,1I0 ol1epToli l1J1aCTHHbl,
HarpYlKeHHoli paBHoMepHblM 110rrepe'lHblM naBJleHMeM.


